Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.830
Filtrar
1.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584060

RESUMO

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Flagelina/metabolismo , Proteínas da Membrana Bacteriana Externa , Peptídeos/metabolismo , Células Dendríticas , Vacinas Bacterianas
2.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582987

RESUMO

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Hipóxia , Regulação Bacteriana da Expressão Gênica
3.
J Phys Chem B ; 128(16): 3929-3936, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619541

RESUMO

Yersinia pestis, the causative agent of plague, is capable of evading the human immune system response by recruiting the plasma circulating vitronectin proteins, which act as a shield and avoid its lysis. Vitronectin recruitment is mediated by its interaction with the bacterial transmembrane protein Ail, protruding from the Y. pestis outer membrane. By using all-atom long-scale molecular dynamic simulations of Ail embedded in a realistic model of the bacterial membrane, we have shown that vitronectin forms a stable complex, mediated by interactions between the disordered moieties of the two proteins. The main amino acids driving the complexation have also been evidenced, thus favoring the possible rational design of specific peptides which, by inhibiting vitronectin recruitment, could act as original antibacterial agents.


Assuntos
Proteínas da Membrana Bacteriana Externa , Simulação de Dinâmica Molecular , Vitronectina , Vitronectina/química , Vitronectina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Humanos , Yersinia pestis/química , Yersinia pestis/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Domínios Proteicos , Ligação Proteica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38573823

RESUMO

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Assuntos
Escherichia coli , Lítio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorção , Resíduos Industriais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Águas Residuárias/microbiologia , Fontes de Energia Elétrica , Técnicas de Visualização da Superfície Celular , Proteínas Recombinantes/genética
5.
PLoS One ; 19(4): e0296127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626020

RESUMO

Lyme disease is the most prevalent vector-borne infectious disease in Europe and the USA. Borrelia burgdorferi, as the causative agent of Lyme disease, is transmitted to the mammalian host during the tick blood meal. To adapt to the different encountered environments, Borrelia has adjusted the expression pattern of various, mostly outer surface proteins. The function of most B. burgdorferi outer surface proteins remains unknown. We determined the crystal structure of a previously uncharacterized B. burgdorferi outer surface protein BBK01, known to belong to the paralogous gene family 12 (PFam12) as one of its five members. PFam12 members are shown to be upregulated as the tick starts its blood meal. Structural analysis of BBK01 revealed similarity to the coiled coil domain of structural maintenance of chromosomes (SMC) protein family members, while functional studies indicated that all PFam12 members are non-specific DNA-binding proteins. The residues involved in DNA binding were identified and probed by site-directed mutagenesis. The combination of SMC-like proteins being attached to the outer membrane and exposed to the environment or located in the periplasm, as observed in the case of PFam12 members, and displaying the ability to bind DNA, represents a unique feature previously not observed in bacteria.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Doença de Lyme/microbiologia , Carrapatos/genética , Proteínas de Membrana/metabolismo , DNA/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Mamíferos/genética
6.
Front Immunol ; 15: 1387534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650936

RESUMO

For several years, we have been committed to exploring the potential of Bordetella pertussis-derived outer membrane vesicles (OMVBp) as a promising third-generation vaccine against the reemerging pertussis disease. The results of our preclinical trials not only confirm its protective capacity against B. pertussis infection but also set the stage for forthcoming human clinical trials. This study delves into the examination of OMVBp as an adjuvant. To accomplish this objective, we implemented a two-dose murine schedule to evaluate the specific immune response induced by formulations containing OMVBp combined with 3 heterologous immunogens: Tetanus toxoid (T), Diphtheria toxoid (D), and the SARS-CoV-2 Spike protein (S). The specific levels of IgG, IgG1, and IgG2a triggered by the different tested formulations were evaluated using ELISA in dose-response assays for OMVBp and the immunogens at varying levels. These assays demonstrated that OMVBp exhibits adjuvant properties even at the low concentration employed (1.5 µg of protein per dose). As this effect was notably enhanced at medium (3 µg) and high concentrations (6 µg), we chose the medium concentration to determine the minimum immunogen dose at which the OMV adjuvant properties are significantly evident. These assays demonstrated that OMVBp exhibits adjuvant properties even at the lowest concentration tested for each immunogen. In the presence of OMVBp, specific IgG levels detected for the lowest amount of antigen tested increased by 2.5 to 10 fold compared to those found in animals immunized with formulations containing adjuvant-free antigens (p<0.0001). When assessing the adjuvant properties of OMVBp compared to the widely recognized adjuvant alum, we detected similar levels of specific IgG against D, T and S for both adjuvants. Experiments with OMVs derived from E. coli (OMVE.coli) reaffirmed that the adjuvant properties of OMVs extend across different bacterial species. Nonetheless, it's crucial to highlight that OMVBp notably skewed the immune response towards a Th1 profile (p<0.05). These collective findings emphasize the dual role of OMVBp as both an adjuvant and modulator of the immune response, positioning it favorably for incorporation into combined vaccine formulations.


Assuntos
Adjuvantes Imunológicos , Bordetella pertussis , Imunoglobulina G , Células Th1 , Coqueluche , Bordetella pertussis/imunologia , Animais , Adjuvantes Imunológicos/administração & dosagem , Camundongos , Células Th1/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/administração & dosagem , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Humanos , COVID-19/imunologia , COVID-19/prevenção & controle , Toxoide Tetânico/imunologia
7.
Sci Rep ; 14(1): 7098, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532068

RESUMO

Peptidoglycan is a carbohydrate with a cross-linked structure that protects the cytoplasmic membrane of bacterial cells from damage. The mechanism of peptidoglycan biosynthesis involves the main synthesizing enzyme glycosyltransferase MurG, which is known as a potential target for antibiotic therapy. Many MurG inhibitors have been recognized as MurG targets, but high toxicity and drug-resistant Escherichia coli strains remain the most important problems for further development. In addition, the discovery of selective MurG inhibitors has been limited to the synthesis of peptidoglycan-mimicking compounds. The present study employed drug discovery, such as virtual screening using molecular docking, drug likeness ADMET proprieties predictions, and molecular dynamics (MD) simulation, to identify potential natural products (NPs) for Escherichia coli. We conducted a screening of 30,926 NPs from the NPASS database. Subsequently, 20 of these compounds successfully passed the potency, pharmacokinetic, ADMET screening assays, and their validation was further confirmed through molecular docking. The best three hits and the standard were chosen for further MD simulations up to 400 ns and energy calculations to investigate the stability of the NPs-MurG complexes. The analyses of MD simulations and total binding energies suggested the higher stability of NPC272174. The potential compounds can be further explored in vivo and in vitro for promising novel antibacterial drug discovery.


Assuntos
Escherichia coli , Glicosiltransferases , Glicosiltransferases/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Simulação de Acoplamento Molecular , Peptidoglicano , Antibacterianos/farmacologia , Simulação de Dinâmica Molecular , Desenvolvimento de Medicamentos
8.
Sci Rep ; 14(1): 7278, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538674

RESUMO

Brucella, a gram-negative intracellular bacterium, causing Brucellosis, a zoonotic disease with a range of clinical manifestations, from asymptomatic to fever, fatigue, loss of appetite, joint and muscle pain, and back pain, severe patients have developed serious diseases affecting various organs. The mRNA vaccine is an innovative type of vaccine that is anticipated to supplant traditional vaccines. It is widely utilized for preventing viral infections and for tumor immunotherapy. However, research regarding its effectiveness in preventing bacterial infections is limited. In this study, we analyzed the epitopes of two proteins of brucella, the TonB-dependent outer membrane receptor BtuB and the LPS assembly protein LptD, which is involved in nutrient transport and LPS synthesis in Brucella. In order to effectively stimulate cellular and humoral immunity, we utilize a range of immunoinformatics tools such as VaxiJen, AllergenFPv.1.0 and SignalP 5.0 to design proteins. Finally, five cytotoxic T lymphocyte (CTL) cell epitopes, ten helper T lymphocyte (HTL) cell epitopes, and eight B cell epitopes were selected to construct the vaccine. Computer simulations are also used to verify the immune response of the vaccine. The codon optimization, in silico cloning showed that the vaccine can efficiently transcript and translate in E. coli. The secondary structure of mRNA vaccines and the secondary and tertiary structures of vaccine peptides were predicted and then docked with TLR-4. Finally, the stability of the developed vaccine was confirmed through molecular dynamics simulation. These analyses showed that the design the multi-epitope mRNA vaccine could potentially target extracellular protein of prevalent Brucella, which provided novel strategies for developing the vaccine.


Assuntos
Brucella , Proteínas de Escherichia coli , Vacinas , Humanos , Brucella/genética , Vacinas de mRNA , Escherichia coli , Lipopolissacarídeos , Epitopos de Linfócito T , Epitopos de Linfócito B , Linfócitos T Citotóxicos , Simulação de Dinâmica Molecular , Vacinas de Subunidades , Biologia Computacional , Simulação de Acoplamento Molecular , Proteínas da Membrana Bacteriana Externa/genética
9.
Fish Shellfish Immunol ; 148: 109504, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508539

RESUMO

Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.


Assuntos
Anguilla , Doenças dos Peixes , Animais , Aeromonas hydrophila , Virulência , Proteínas da Membrana Bacteriana Externa , Perfilação da Expressão Gênica/veterinária
10.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38470113

RESUMO

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Assuntos
Lipoproteínas , Doença de Lyme , Anticorpos de Domínio Único , Animais , Cães , Humanos , Vacinas contra Doença de Lyme , Epitopos , Anticorpos Antibacterianos , Vacinas Bacterianas , Proteínas da Membrana Bacteriana Externa , Doença de Lyme/prevenção & controle , Antígenos de Superfície , Anticorpos Monoclonais
11.
Hum Vaccin Immunother ; 20(1): 2330768, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38517203

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen responsible for the most prevalent bacterial sexually transmitted disease globally. The high prevalence of chlamydial infections underscores the urgent need for licensed and effective vaccines to prevent transmission in populations. Bacterial outer membrane vesicles (OMVs) have emerged as promising mucosal vaccine carriers due to their inherent adjuvant properties and the ability to display heterologous antigens. In this proof-of-concept study, we evaluated the immunogenicity of Salmonella OMVs decorated with C. trachomatis MOMP-derived CTH522 or HtrA antigens in mice. Following a prime-boost intranasal vaccination approach, two OMV-based C. trachomatis vaccines elicited significant humoral responses specific to the antigens in both systemic and vaginal compartments. Furthermore, we demonstrated strong antigen-specific IFN-γ and IL17a responses in splenocytes and cervical lymph node cells of vaccinated mice, indicating CD4+ Th1 and Th17 biased immune responses. Notably, the OMV-CTH522 vaccine also induced the production of spleen-derived CD8+ T cells expressing IFN-γ. In conclusion, these results highlight the potential of OMV-based C. trachomatis vaccines for successful use in future challenge studies and demonstrate the suitability of our modular OMV platform for intranasal vaccine applications.


Assuntos
Infecções por Chlamydia , Vacinas , Feminino , Animais , Camundongos , Chlamydia trachomatis , Linfócitos T CD8-Positivos , Antígenos de Bactérias , Salmonella , Imunidade , Vacinas Bacterianas , Infecções por Chlamydia/prevenção & controle , Anticorpos Antibacterianos , Proteínas da Membrana Bacteriana Externa
12.
Int J Med Microbiol ; 314: 151616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461565

RESUMO

Nontypeable Haemophilus influenzae (NTHi) is the dominant pathogen in several infectious diseases. Currently the use of antibiotics is the main intervention to prevent NTHi infections, however with the emergence of drug resistant strains, it has compromised the treatment of respiratory infections with antibiotics. Therefore there is an urgent need to develop a safe and effective vaccine to prevent NTHi infections. We investigate the potential of C-HapS-P6 fusion protein as a vaccine for treating NTHi in murine models. PGEX-6P2/C-HapS-P6 fusion gene was constructed using overlap extension polymerase chain reaction. The recombined plasmid was transformed into Escherichia coli for protein expression. The mice were subjected to intraperitoneal immunization using purified antigens. Immunoglobulin (Ig) G in serum samples and IgA in nasal and lung lavage fluids were analyzed using enzyme-linked immunosorbent assay. Cytokine release and proliferation capacity of splenic lymphocytes in response to antigens were measured in vitro. The protective effect of the C-HapS-P6 protein against NTHi infection was evaluated by NTHi count and histological examination. The data showed that the C-HapS-P6 fusion protein increased significantly the levels of serum IgG and nasal and lung IgA, and promoted the release of interleukin (IL)-2, interferon-ϒ, IL-4, IL-5, and IL-17 and the proliferation of splenic lymphocytes compared with C-HapS or P6 protein treatment alone. Moreover, C-HapS-P6 effectively reduced the NTHi colonization in the nasopharynx and lungs of mice. In conclusion, our results demonstrated that the C-HapS-P6 fusion protein vaccine can significantly enhance humoral and cell immune responses and effectively prevent against NTHi infection in the respiratory tract in murine models.


Assuntos
Infecções por Haemophilus , Vacinas , Camundongos , Animais , Haemophilus influenzae/genética , Proteínas da Membrana Bacteriana Externa , Imunoglobulina G , Imunoglobulina A/análise , Antibacterianos , Infecções por Haemophilus/prevenção & controle , Anticorpos Antibacterianos , Camundongos Endogâmicos BALB C
13.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467907

RESUMO

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Assuntos
Proteínas de Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
14.
mBio ; 15(4): e0352223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470052

RESUMO

Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Cobre/metabolismo , Escherichia coli Uropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo
15.
mSphere ; 9(3): e0072923, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38440985

RESUMO

In December 2022, an alert was published in the UK and other European countries reporting an unusual increase in the incidence of Streptococcus pyogenes infections. Our aim was to describe the clinical, microbiological, and molecular characteristics of group A Streptococcus invasive infections (iGAS) in children prospectively recruited in Spain (September 2022-March 2023), and compare invasive strains with strains causing mild infections. One hundred thirty isolates of S. pyogenes causing infection (102 iGAS and 28 mild infections) were included in the microbiological study: emm typing, antimicrobial susceptibility testing, and sequencing for core genome multilocus sequence typing (cgMLST), resistome, and virulome analysis. Clinical data were available from 93 cases and 21 controls. Pneumonia was the most frequent clinical syndrome (41/93; 44.1%), followed by deep tissue abscesses (23/93; 24.7%), and osteoarticular infections (11/93; 11.8%). Forty-six of 93 cases (49.5%) required admission to the pediatric intensive care unit. iGAS isolates mainly belonged to emm1 and emm12; emm12 predominated in 2022 but was surpassed by emm1 in 2023. Spread of M1UK sublineage (28/64 M1 isolates) was communicated for the first time in Spain, but it did not replace the still predominant sublineage M1global (36/64). Furthermore, a difference in emm types compared with the mild cases was observed with predominance of emm1, but also important representativeness of emm12 and emm89 isolates. Pneumonia, the most frequent and severe iGAS diagnosed, was associated with the speA gene, while the ssa superantigen was associated with milder cases. iGAS isolates were mainly susceptible to antimicrobials. cgMLST showed five major clusters: ST28-ST1357/emm1, ST36-ST425/emm12, ST242/emm12.37, ST39/emm4, and ST101-ST1295/emm89 isolates. IMPORTANCE: Group A Streptococcus (GAS) is a common bacterial pathogen in the pediatric population. In the last months of 2022, an unusual increase in GAS infections was detected in various countries. Certain strains were overrepresented, although the cause of this raise is not clear. In Spain, a significant increase in mild and severe cases was also observed; this study evaluates the clinical characteristics and the strains involved in both scenarios. Our study showed that the increase in incidence did not correlate with an increase in resistance or with an emm types shift. However, there seemed to be a rise in severity, partly related to a greater rate of pneumonia cases. These findings suggest a general increase in iGAS that highlights the need for surveillance. The introduction of whole genome sequencing in the diagnosis and surveillance of iGAS may improve the understanding of antibiotic resistance, virulence, and clones, facilitating its control and personalized treatment.


Assuntos
Pneumonia , Infecções Estreptocócicas , Criança , Humanos , Streptococcus pyogenes , Espanha/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia
16.
Methods Mol Biol ; 2778: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478268

RESUMO

ß-barrels are a class of membrane proteins made up of a cylindrical, anti-parallel ß-sheet with a hydrophobic exterior and a hydrophilic interior. The majority of proteins found in the outer membranes (OMs) of Gram-negative bacteria, mitochondria, and chloroplasts are ß-barrel outer membrane proteins (OMPs). ß-barrel OMPs have a diverse repertoire of functions, including nutrient transport, secretion, bacterial virulence, and enzymatic activity. Here, we discuss the broad functional classes of ß-barrel OMPs, how they are folded into the membrane, and the future of ß-barrel OMP research and its applications.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Mitocôndrias/metabolismo , Bactérias Gram-Negativas/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína
17.
Methods Mol Biol ; 2778: 65-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478272

RESUMO

The in vitro reconstruction assay enables us to evaluate in detail the insertion and proper protein folding (together termed assembly) of ß-barrel membrane proteins. Here, we introduce an in vitro reconstitution experiments using isolated membrane fractions from Escherichia coli (E. coli). Membrane fractions isolated from E. coli cells and disrupted by sonication, which we have termed E. coli microsomal (mid-density) membrane (EMM), are ideal for biochemical experiments, as they can be harvested by high-speed centrifugation and do not require ultra-centrifugation. EMM pretreated with detergent can assemble externally supplemented ß-barrel membrane proteins via intact ß-barrel assembly machinery (BAM) complex retained in EMM. This method not only allows assembly analysis with inexpensive equipment but it also can be applied to drug screening using assembly as an indicator with high reproducibility. In this chapter, we introduce our method of evaluating assembled ß-barrel membrane proteins by demonstrating four representative ß-barrel membrane proteins: E. coli major porins OmpA and OmpF; enterohemorrhagic E. coli (EHEC) autotransporter EspP, and Haemophilus influenzae (H. influenzae) adhesin Hia.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Reprodutibilidade dos Testes , Proteínas da Membrana Bacteriana Externa/metabolismo , Dobramento de Proteína
18.
Methods Mol Biol ; 2778: 83-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478273

RESUMO

ß-barrel membrane proteins populate the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts, playing significant roles in multiple key cellular pathways. Characterizing the functions of these membrane proteins in vivo is often challenging due to the complex protein network in the periplasm of Gram-negative bacteria (or intermembrane space in mitochondria and chloroplasts) and the presence of other outer membrane proteins. In vitro reconstitution into lipid-bilayer-like environments such as nanodiscs or proteoliposomes provides an excellent method for examining the specific function and mechanism of these membrane proteins in an isolated system. Here, we describe the methodologies employed to investigate Slam, a 14-stranded ß-barrel membrane protein also known as the type XI secretion system that is responsible for translocating proteins across the outer membrane of many bacterial species.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteolipídeos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteolipídeos/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Bactérias Gram-Negativas/metabolismo
19.
Methods Mol Biol ; 2778: 101-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478274

RESUMO

Membrane-embedded ß-barrels are the major building blocks of the Gram-negative outer membrane and are involved in antibiotic resistance, virulence, and the maintenance of bacterial cell physiology. The increased frequency of multidrug resistant Gram-negative infections warrants the sharing of accessible methods for the study of ß-barrels. One such method is "in vivo disulfide-bond crosslinking" which is a highly informative and cost-effective approach to study the structure, topology, dynamicity, and function of ß-barrels in situ. The approach can also be used to identify and finely map both stable or transient interactions between ß-barrels and other interacting proteins. In this chapter, I describe the conceptual basis of in vivo disulfide-bond crosslinking and the potential pitfalls in experimental design. I also provide a general protocol for high-efficiency in vivo disulfide-bond crosslinking and modified protocols as examples for how the method can be adapted to different scenarios.


Assuntos
Proteínas da Membrana Bacteriana Externa , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Modelos Moleculares , Bactérias/metabolismo , Dissulfetos
20.
Methods Mol Biol ; 2778: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478269

RESUMO

Transmembrane ß-barrel proteins reside in the outer membrane of Gram-negative bacteria and are thus in direct contact with the environment. Because of that, they are involved in many key processes stretching from cellular survival to virulence. Hence, they are an attractive target for the development of novel antimicrobials, in addition to being of fundamental biological interest. To study this class of proteins, they are often required to be expressed in Escherichia coli. Recombinant expression of ß-barrel proteins can be achieved using two fundamentally different strategies. The first alternative uses a complete coding sequence that includes a signal peptide for targeting the protein to its native cellular location, the bacterial outer membrane. The second alternative omits the signal peptide in the gene, leading to mislocalization and aggregation of the protein in the bacterial cytoplasm. These aggregates, called inclusion bodies, can be solubilized and the protein can be folded into its native form in vitro. In this chapter, we present example protocols for both strategies and discuss their advantages and disadvantages.


Assuntos
Proteínas de Escherichia coli , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sinais Direcionadores de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...